Windows Device Driver Development

1. Setup Driver Development Environment

Step 1: Install following packages on the devel opment computer
1. Platform Software Development Kit (SDK),
2. Micorsoft Visual C (must use the version specified in DDK, newer version might not be working),
3. Device Driver Kits (DDK).

Step 2: Test driver development system
To compile a driver, one uses “build.exe” program from DDK. BUILD reads inputs from files “dirs” or
“sources” and generates outputs “build.log”. Suppose DDK isinstaled in c:\ntddk directory. Open a
command window and type

c: \ NTDDK\ bi n\ set env. bat c:\ NTDDK free

This setup an environment to build drivers of free version (no debug). In this command window, type the
following commands to build a sample driver,

cd c:\NTDDK\ src\general\portio
build

If everything goes well, “genport.sys’ should appear in “CA\NTDDK \src\general\portio\sys\objfre\i386”
folder and “gpdread.exe” and “gpdwrite.exe” are also generated.

2. Setup Driver Debug Environment

Install Checked Build (Debug Build) Windows on a driver test system. Add aline in [operation systems] section
of “boot.ini” file. For example

mul ti (0)disk(0)rdisk(0)partition(1)\WNNT="Debug W ndows 2000" /debug /debugport=coml
/ baudr at e=192000

On the development system, create a dedicated debugging directory “c\Symbols’ and copy OS symbol files
from Windows CD in “\support\debug\i386\Symbols’, especially “hal.dbg” and “ntoskrnl.dbg” into this
directory. Also, put the newly created driver (e.g., genport.sys) in this directory because it symbol information
for the driver to be tested.

On the development system, start “WinDbg.exe”. From View->Option, select Kernel Debugger tab to enable
kernel debugger, set communication port and baud rate. Note, the baud rate must match that specified in the test
machine. Select Symbols tab and set the symbol search path to “c\Symbols’.

Connect the development machine and test machine with a null modem cable. Copy the newly created driver
(e.g., genport.sys) to the test system (normally in %SystemRoot%\System32\Drivers). Create necessary
registry entries for this driver (under \HKLM\System\CurrentControl Set\Servics\driver_name). It might be
easier to install/uninstall a device driver using a setup program.

DbgPrint() is amacro in Kernel mode equivalent of C’s printf(). Often encloded in #f DBG and #endif
conditionals. ASSERT() macro only works in checked build.

Start value in registry: (1) 0x00 -- Boot, (2) OxO1 — System, (3) 0x02 — Automatic, (4) 0x03 — Manual, (5) 0x04
— Disabled.

3. Sample Driver

11
11

Aut hor: Jial ong He
Dat e: Dec. 25, 2002

#define NativeDriverName L"\\Device\\MDriver"
#def i ne DosDri ver Name L"\\ DosDevi ces\\ MyDri ver™

I/ O Manager calls this routine to unload the device driver

VO D MyUnl oad (1 N PDRI VER OBJECT pDriver Obj ect) {

}

UNI CODE_STRI NG Devi ceLi nkUni codeStri ng;

NTSTATUS st at us;

/1 "1oDel et eSynbol i cLi nk" renoves a synbolic link

Rt nitUni codeString (&DevicelLi nkUni codeString, DosDriverNane);
status = | oDel et eSynbolicLi nk (&Devi ceLi nkUni codeStri ng);

/1 "loDel eteDevice" renoves a devi ce object

i f (NT_SUCCESS(status))
| oDel et eDevi ce(pDri ver Obj ect - >Devi ceObj ect) ;

/1 End of DriverUnload

/1l Handles "CreateFile" Wn32 call fromuser program

NTSTATUS MyCreate (I N PDEVI CE_OBJECT pDriverObject, INPIRP plrp) {

}

pl rp->loStatus. Status = STATUS_SUCCESS;
plrp->loStatus.Information = 0; /1 no bytes xfered
| oConpl et eRequest (plrp, |1 O_NO_| NCREMENT) ;

return STATUS_ SUCCESS;

/1 End of MyCreate

/1 Handl es "Cl oseHandl e" Wn32 call from user program

NTSTATUS MyCl ose (I N PDEVI CE_OBJECT pDriverCbject, INPIRP plrp) {

pl rp->loStatus. Status = STATUS_SUCCESS;
plrp->loStatus.Information = 0; /1 no bytes xfered
| oConpl et eRequest (plrp, 1 O_NO_|I NCREMENT) ;

return STATUS_ SUCCESS;

} //End of MyCl ose

/1 Handl es "ReadFile" Wn32 call fromuser program

NTSTATUS MyRead (I N PDEVI CE_OBJECT pDriverObject, INPIRP plrp) {

plrp->lo0Status. Status = STATUS_ SUCCESS;
plrp->loStatus.Information = 0; /I no bytes xfered
| oConpl et eRequest (plrp, 1 O _NO_ | NCREMENT);

return STATUS_ SUCCESS;

} // End of MyRead

/1 Handles "WiteFile" Wn32 call fromuser program
NTSTATUS MyWite (I N PDEVI CE_OBJECT pDriverObject, INPIRP plrp) {

plrp->loStatus. Status = STATUS_SUCCESS;
plrp->loStatus.Information = 0; /Ino bytes xfered
| oConpl et eRequest (plrp, 1 O _NO_ | NCREMENT);

return STATUS_SUCCESS;

} //End of MyWite

/1 Handl es "DeviceloControl" Wn32 call fromuser program
NTSTATUS MyDevi ceControl (I N PDEVI CE_OBJECT pDriverObject, INPIRP plrp) {

pl rp->loStatus. Status = STATUS_SUCCESS;
plrp->loStatus.Information = 0; /1 no bytes xfered
| oConpl et eRequest (plrp, |1 O_NO_| NCREMENT);

return STATUS_SUCCESS;

} //End of MyDeviceControl
/1 Each driver must have DriverEntry routine. The |/ O Manager

/1 calls the DriverEntry routine when it |oads the driver.
/1

/1 pDriverObject - Point to a driver object, passed froml/O Manager
/1 pRegi stryPath - UN CODE_STRI NG pointer to

/1 \ HKLM Syst em Current Cont r ol Set\ Servi ces\Dri ver Nane

/1

/1 Ret urn val ue:

/1 STATUS_SUCCESS or an appropriate error status.

11

NTSTATUS DriverEntry (I N PDRI VER_OBJECT pDriver Obj ect,
I N PUNI CODE_STRI NG pRegi stryPath) {

PDEVI CE_OBJECT pDevi ceCbj ect = NULL;

UNI CODE_STRI NG Devi ceNameUni codeStri ng;
UNI CODE_STRI NG Devi ceLi nkUni codeSt ri ng;
NTSTATUS st at us;

/1 "RtllnitUnicodeString" function initializes a counted
/1 Unicode string froma zero-term nated Uni code string.

Rt |1 nitUni codeString (&DeviceNaneUni codeString, NativeDriverNane);
Rt|1nitUni codeString (&DeviceLi nkUni codeString, DosDriverNane);

/1 "1oCreateDevice" allocates nenory for and initializes
/1 a device object for use by a driver.
L e e
status = | oCreateDevice(pDriverObject, O,
&Devi ceNaneUni codeStri ng,
FI LE_DEVI CE_UNKNOWN,
0, FALSE,
&pDevi cej ect) ;

if (!NT_SUCCESS(status)) return status;

/1 "1oCreateSynbolicLink" sets up a synbolic link between
/1 an NT device object nane and a user-visible name for the device.
/1l user program can only access devices in "\??" object directory

status = |1 0CreateSynbolicLink (&DeviceLi nkUni codeString, &DeviceNaneUni codeString);
if (!NT_SUCCESS(status)) {

| oDel et eDevi ce(pDevi ceObj ect) ;
return status;

}
L e e
/1 Fill Dispatch routine entry points
L e e L
pDri ver Cbj ect - >Maj or Functi on[| RP_MJ_DEVI CE_CONTROL] = MyDeviceControl;
pDri ver Obj ect - >Maj or Functi on[| RP_MJ_CREATE] = MyCreat e;
pDri ver Obj ect - >Maj or Function[| RP_MJ_CLOSE] = MC ose;
pDriver Obj ect->Maj or Function[I RP_M]_WRI TE] = MyWite;
pDri ver Obj ect - >Maj or Functi on[| RP_M]_READ] = MyRead;
pDri ver Obj ect - >Dri ver Unl oad = MyUnl oad;
return STATUS_SUCCESS;
} /1 End of DriverEntry
-------- FileName: makefile -----------
#
DO NOT EDIT THIS FILE!'!! Edit .\sources. if you want to add a new source
file to this conmponent. This file nmerely indirects to the real nake file
that is shared by all the driver conponents of the Wndows NT DDK
#

I | NCLUDE $(NTMAKEENV) \ makefi | e. def

-------- FileName: sources ---------------

TARGETNAME=MyDr i ver
TARGETTYPE=DRI VER

TARGETPATH=.

| NCLUDES= $(BASEDI R)\i nc; .

SOURCES=.\ MyDri ver.c

General Purpose Commands
Macrosin SOURCE file

TARGETNAME (Required.) Specifiesthe name of the library being built, excluding the file extension.
(Required) Specifies adirectory name that is the destination of all build products (exe .dil, .lib files, and so on). BUILD creates
TARGETPATH platform-specific subdirectories under this directory. Note that BUILD aways creates an \obj subdirectory under the directory

containing the sourcesfile.

TARGETPATHLIB

Specifies afile path and name that is the destination for import libraries created by the build operation. If not specified, import
libraries are place in the same subdirectory as other build product files (that is, a subdirectory under TARGETPATH).

TARGETTYPE (Required) Specifiesthetype of product being built. Thisistypically DRIVER or DYNLINK (for DLLS).

TARGETEXT Specifies the file name extension for DLLSs, such as .cpl. If thismacro is not defined, the default file name extension for DLLsis .dll.
(Requi red.) Specifies the set of import libraries with which your product must be linked. Following is an example:
TARGETLIBS=$(SDK_LIB_PATH)kernel32.lib \

TARGETLIBS $(SDK_LIB_PATH)\advapi32.lib\

$(SDK_LIB_PATH)\user32.lib \
$(SDK_LIB_PATH)\spoolsslib
INCLUDES Containsalist of paths to be searched for header files during compilation. Entriesin thislist are separated by semicolons, and the

paths can be absolute or relative to the directory in which the sourcesfile resides.

BUILD also searches for header filesin adefault list of directories. If a sourcesfile contains INCLUDES, the specified paths are
searched before the default paths.

(Required)) Contains alist of source file names with extensions. These source files will compose the library or DLL being
constructed. Entriesin thislist are sgparated by spaces or tabs. The files must reside in the directory in which the sourcesfile

SOURCES resides. (If you are supplying one or more source files that contain amain routine, they must be listed using the UMAPPL or
UMTEST macro. They are not listed using SOURCES))

UMTYPE windows —Win32 user mode, NT — kernel-mode, console —Win32 console application
Contains alist of named source files containing amain function. These file names are specified without extensionsand are

UM APPL separated by asterisks Each filein thislist is compiled and linked with the library or DLL generated by the SOURCES line. If you
use UMAPPL, BUILD will automatically build executable files. Listing the names of executablesin the BUILD command lineis
unnecessary.
Containsalist of named source files containing amain function. Thesefile names are specified without extensionsand are

UMTEST separated by asterisks. Each filein thislist is compiled and linked with the library or DLL generated by the SOURCES line. If you
use UMTEST, you must identify the names of files you want built by listing them in the BUILD command line.

UMAPPLEXT Specifies the file name extension for executable files, such as.com or .scr. If thismacro is not defined, the default file name
extension for executablefilesis.exe

UMLIBS Containsalist of path names of libraries to be linked to the files specified by UMTEST or UMAPPL. The library specified by

SOURCES should beincluded here. Entriesin thislist are separated by spaces or tabs. These path names must be absolute.

NTPROFILEINPUT

Allows you to specify afilelisting the order in which the linker should lay out functionsin theimage. Set this macro asfollows:
NTPROFILEINPUT=1

If you set this macro, the directory containing sources mug also contain afile named TargetName.prf, where TargetName is the

name specified by TARGETNAME.

DLLORDER

Allowsyou to specify afilelisting the order in which the linker should lay out functionsin theimage. The macro must be set to the
name of thefile containing the order list. Y ou can use this macro instead of NTPROFILEINPUT.

386 WARNING_LEVEL

Specifies the compiler warning level. The default is:
386 WARNING_LEVEL=-W3

Macrosin DIRSfile

BUILD can be instructed to recursively build an entire source tree using adirsfile. The dirsfile residesin adirectory that contains subdirectories (for example, at the
root of a source code tree or subtree). Each subdirectory can be a source directory or another source tree. A dirsfile should exist at the root of each source code subtree,
and a sources file should exist in each "leaf" directory (that is, directories containing actual source code).

Y ou can define the following macrosin adirsfile:

DIRS

Contains alist of subdirectoriesto be built by default.

OPTIONAL_DIRS

Contains alist of subdirectories to be built only if they are explicitly specified as BUILD command arguments.

BUILD Environment Variables

BUILD uses a set of environment variables. Most of them are set by the DDK's setenv.bat file when the "free" or "checked" environment is being initialized. Some can
be referenced within sources files, while others are meant for internal use by BUILD. To reference an environment variable in a sources file, use the following syntax:

$(VariableName)

BASEDIR

The base of the build product's source tree.

BUILD ALT DIR

Appends specified characters to the \obj subdirectory name. The "free" and "checked" build environments use this variable to create
\objfre and \objchk subdirectories.

BUILD DEFAULT

A list of default parametersto passto the BUILD utility.

BUILD_DEFAULT_TARGETS

A list of default target switches (such as"-386 -MIPS").

BUILD_MAKE_PROGRAM

The name of the make utility used by BUILD. This must benmake.exe.

CRT_INC_PATH

Path to adirectory containing Windows 2000 header files.

CRT_LIB_PATH

Path to adirectory containing Microsoft -supplied C import libraries.

DDK_INC_PATH

Path to a directory containing DDK -specific, Microsoft -supplied header files.

DDK_LIB_PATH

Path to adirectory containing DDK -specific, Microsoft -supplied C import libraries.

DDK_LIB DEST

Path to adirectory to receive a DDK-specific import library that is a build product.

OAK_INC_PATH

Path to adirectory containing Microsoft -supplied header files.

SDK_LIB_DEST Path to adirectory to receive an import library that isabuild product.

SDK_LIB_PATH Peth to adirectory containing Microsoft -supplied C import libraries.

WDM_INC_PATH Path to adirectory containing Microsoft -supplied, WDM -specific header files.

C_DEFINES Switches passed to both the C compiler and the MIDL compiler.

NTDEBUG In the "checked" environment thisis set tontsd, which causes BUILD to set the C compiler's /Zi option to create symbolic

debugging information.

BUILD_OPTIONS

List of optional subdirectories, identified by OPTIONAL_DIRS in adirsfile, that should be scanned during a build operation. For
more information, see Macrosfor dirs Files.

DEBUG Routines (User Mode)

VOID OutputDebugString(
LPCTSTR IpOutputString

),

sends a null-terminated string to the debugger of the calling process. When debugging a user-mode driver,
OutputDebugString displays the string in the WinDbg Command window. |f the debugger is not running, this routine has
no effect. OutputDebugString does not support the variable arguments of aprintf formatted string.

VOID DebugBreak(VOID);

A breakpoint routine causes a breakpoint exception to occur in the current process, so that the calling thread can signal the
debugger associated with the calling process. If no debugger isrunning, thisusually resultsin the termination of the calling
process.

DEBUG Routines (Kernel M ode)

DbgPrint displays output in the debugger window. This routine supports the basic printf format parameters. Only kerndl-

DbgPrint mode drivers can call DbgPrint.
KdPrint is similar to DbgPrint when running on a checked build. On afree build, it has no effect.
DbgBreakPoint also causes a breskpoint, but it additionally sends a 32-bit status code to the debugger.
DbgBreakPointWithStatus The DbgBreakPoint routine works in kernel-mode code, but otherwise is similar to the DebugBreak user-moderoutine.
K dBreakPoint identically to DbgBreakPoint, but only effect in checked build version.
assert causes the debugger to display the failed expression and itslocation in the program,;

4. References

1. Open System Resources (http://www.osr.com/)
Thisis the authors web site of the book “Windows NT Device Driver Development” — an excellent book.

2. Microsoft® Windows® Driver Development Kit (DDK) home page (http://www.microsoft.com/ddk/)

3. Kernel model device driver FAQ (http://www.cmkrnl.com/fag.html)

4. WinDriver — a generic windows driver that can be customized. (http://www.jungo.com/)

